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STOCHASTIC APPROACH TO NUCLEATION AND COAGULATION
) IN ADIABATICALLY CILOSED GASES

The outlined theory leads to proper transition probabilities of
coagulation and mvuwﬂ of clusters under adiabatic conditions.
It includes cluster—cluster interactions as well as particle-
cluster interactions and considers further the change of the
temperature and the vdlume/pressure of the system due to the
elementary MMWnﬂwo:m. Moreover, kinetic equations for the mean

cluster distribution are derived and discussed.

1. The Supersaturated State
We consider initially a system of N particles at a temperature
Ta and a volume Va. The parameters Ta and Va are fixed in such
a way that the N Uv1ﬂwn~mm exist in a gaseous state.

We assume further two different kinds of particles

N = N. + No = const. (1.1

N Swm:m the number of particles of w.nosnmzmwmum <muor1. which
are able to create clusters; No is the number of particles of a
carrier gas. This gas is c:no:nm:mmawm for the mw<m1 con—
strains, but it takes over the latent 7Wwﬂ which is released
during the condensation process and thus acts as an heat bath.
Since the system is closed, the particle numbers N, and No

are both -constants. Let us now assume ﬁ:ww in ﬁsml initial .
state, indicated by the index A, only free particles exist in
the system. Assuming an ideal gas mixture it :Ounm - for the

.initial pressure of the system:

(No+N Y kpTa

Pa ® Pav + pPac = v

(1.2

Pav and pao are the partial pressures of both components.

A phase transition occurs only for a certain supersatura-—
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tion in the system, that mesns the system must esiot initially
in a state far from equilibrium. Let us define the initial

supersaturation as follows:

'

Pav NoknTa

Ya = = H Pav *{Ta) 1.
P*(Ta)  p*(TalVa A PTTa a.s

P*(Ta) means the equilibrium pressure of the systém for the
given temperature Ta. Its temperature dependence is given by
the known relation /1/

fa fr 1
P=(Ta) = p=(To) exp AT - Ml (1.4)
. » © a

whare q means the evaporation heat per particle.

ﬂJW phase w1m:mwﬂ»03 which occurs in the supersaturated system
can be considered now for two different thermodynamic con-
strains (see Fig.1): ]

(i) The system volume is fixed at the value Vo=Va. Since the
number of free UNWﬂwnwmm of the condensable vapour is decreased
during the nosam:mano:,U1onmmm. the pressure in the system is
changed by the vapour deplétion and by the heat released QC1ﬂ:n
the cluster ﬁ013mﬂ»09.\wﬂu<m.o\.
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Sketch of the initially supersaturated system, for the conside-—
red thermodynamic constraints. In both cases we 3w<m no heat

contact with the surroundings (adiabatic conditions)
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Awww The system is closed by a movable piston under a constant
pressure peo. In this case the system volume changes because of
the depletion of free particles and the change of the internal
temperature, while the pressure of the system is always equal
to the external pressurea.

In order to nNEDW1w the behaviour of both systems we assume the

same initial supersaturation in both cases. This is fulfilled

if the external pressure po is chossn mn:wm to pa teq. <(1.2)),

2. Thermodynamic Investigations of the System
The important distinction between both systems results from the
fact nrmﬂ the latter is able to exchange volume work with the

¥
surroundings. Remembering the first law of thermodynamics

gu = 8Q - p dVv (2.1

it vyields for an adiabatically isolated system (8Q=0) in the

considered cases:

)y WT,V,N) = const.; (ii) H(T,p,N) = U + pV = const.  (2.2)

where U is the internal energy and H the enthalpy of the
system. - )

We must now consider that the particles of the condensable
vapour are awmm1wUCnma in clusters of different sizes, when a
phase ﬂﬂm:Wwﬂwos occurs. m?ﬂﬂoncnw:m a discrete cluster distri-
bution va\n

N = {No,Ns,N2,...N7ms ,Nn...? 2.5

where N, is the number of particles of the carrier gas, N, is

the number of free particles of the condensable vapour
(monomers}), Nz the number of dimers, «=+3 Nn the number of
clusters of size n, that means they consist of n particles.

Because of the limitation of the .particle number it holds:

~N
N, = const., N_ = E. N N, = const. (2.4)

A '
For the maximum number of clusters of a given size n it yields:

0 £ No £ Nu/n : - (2.5)
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) TWL,Vo N =

Assuming the clusters and mﬂmw particles of the condensable
vapour and the carrier gas as an ideal mixture we may express
the actual pressure. in system (i) or the actual volume of

system (ii), respectively, as follows:

. ~ kKaT(NY ~N kaT(N)
() pa) N = ii N) = —_=
PUD = E, No—pm C:. VD = E_ N = (2.6)

5

Caused by the heat isolation the actual temperature in both
systems depends on the mmﬁva»mrmn.n~CMnm1 distribution because
of w:m latent heat released. We assume ﬂsrﬁ T(N) is a global
parameter, which must be o_u,nmwsmn from the canservation of
energy or enthalpy (eq. (2.2)).

Pravious investigations of system (i) . /2,3/ lead to the
following equation for the internal energy of an ideal mixture

of clusters and free particles:

CCT. VN = O 3 . ") -
Vel = I N kT e e - T T 2.7

Here ., isg r potential term n:m1wan1w~w:m the energy of M
cluster of size n. It is mnmnw*wwn later, ﬁow.ﬂzm moment we
consider only its temperature dependence.

The wJﬂJG~J< H is oumww:ma from the ralation
H(T,po,N) = CA+.<.mw * po'V(N), where V is given u<.on. (2.6).

Since in both cases the energy or the enthalpy are constants we -
find the following expressions for the temperature in depen-

dence on the rnncwn muzmﬁnw n»mm1»UCWwOJ

N
U=~ I Nafn

=0 .

NP3 Y
Jmo " M XI.I 3T . ?
N .
H ~\_Z_Nnf,
iy T(H,po,N) = _ (2.
1Po N ) - S YR ‘ 2.8)
nEo Molz M 5T

The proper thermodynamic potential of the isolated m<Wn03 iS5

the entropy S. It has been derived in previous works /2,3/:
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wﬁl ZJ M
S{(N) = £ N Al wﬂl - kaln v An™ + 3 ks 2.9

Here An is the de Broglie wavelength:

AalT) = A4(TIN"272 = h(2MUMm1kpT) —3-Rn—1,2 (2.10)

According .ﬂo whether we consider the system (i) or (ii), ‘the
entropy is a function S=S{U,V;N) (i) or a function S=8S{H,p,N)
(ii). This distinction depends only on the temperature 4~C.<.Rv
or T(H,p,N), {eq. {(2.8)) which must be inserted inteo the
equation of the entropy to obtain the right thermodynamic

potential.

3. Kinetics of the Phase Transition
3.1. Kinetic Assumptions and Master Equation
The phase transition occurs by the formation of clusters and
their growth and shrinkage. The cluster evolution is presented
by the time development of the distribution N={Ngo,N;...Nn.}. In
order to discuss this evolution we suppose the following
assumptions:
(1) The cluster growth and shrinkage may be expressed by a
stochastic reaction, which is denoted in ﬂm15w. of chemical
wu:»nwnw" ’
we
An + A, MHHHW Rrem y Ny,m 2 O (3. 1)
w—

An is a cluster of size n which "reacts” with another cluster
of size m; w* and w— are the transition probabilities per unit
time of the stochastic reaction in the given direction. They
will be specified afterwards.
The 1mwnnwm3 equation (3.1) includes a variety of possible
processes!:
~ For m=0 we consider a reaction of clusters or ‘particles of

the contdensable vapour with these of the carrier gas, which

results in a ﬂmamm1mﬁcwm relaxation in the system.
- For m=1 the cluster growth and shrinkage is due only to an

attachment or evaporation of monomers of the condensable

vapour (cluster-particle interaction).
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- For m22 the cluster growth occurs by the incorporation of
other clusters, that means coagulation - or, in the opposite
direction, a:  break of a large cluster into pieces is
considered (cluster-cluster interaction). h

Interactions between more than two participates may be approxi-

mated Uv successive reactions of two of them, like:

A *+ A + B = A+ Apen =3 Axemen (3.2)

(ii) From a statistic point of view every possible distribution

N is found with a certain probability for a given time, defined

by

P(N,t) = P(No, NaNa Jo. Nm ..o Neo, ) (3.3

If the kinetics is assumed as an Markovian. discrete process,

the dynamics of the probability P(N,t) obeys a master equation:

3PN, t)
=z
at N

W CNIN DIPON ) -wiN" PN, ) ) (3.4

The quantities w(N’[N) are the transition probabilities per

unit time for the transition from N to N°. .N' specifies

those
distributions which are attainable from the assumed distribu-

tion N via the reactions (3.3).

We make the assumption that the stmﬂ»nm,Oﬁ .phase transition
can be described U%,ﬂjm master mﬂ:mﬂwo: (3.4) with transition
probabilities, which are amﬂm1iw:mn from a uniform point of

view both for the nucleation and the coagulation processes and

.their opposite reactions.

The stationary solution oﬁ.nvw.awmnmﬂ equation requires that
3P(N,t)/3t=0. From this- condition we find £ J(NIN)>=0 with

JNIND =w(NINTDIPN' ) ~w (N’ [M)PIN, t) being the probability Flux
between the states N° and N. - ¢
Since the system is not pumped the equilibrium condition is
given by the more restricted condition of detailed balance. It

means J(N[N’)=0 resulting in /7/

ZAK_B.VVOAEmV = WiN |NYP=(N)

. 3.5)

Here Pe(N) is the equilibrium uwwumvwwuﬂ< to find a certain

cluster distribution. It can be derived from microscopic
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considerations /2/.

3.2. Equilibrium Probability Distribution

In w:mwaon<:w3wn equilibrium the probability PO(N) to find a
certain distribution of clusters in the bath of the particles
of the carrier gas is defined by the <following relation
12,4,22/ ’

PO(NY = %nﬂzvoonnn »es Pn) dgs ... dpw (3.6}

Here e°¢{g;: ... pn) means the equilibrium probability distribu-
tion for the N particles in the spatial and momentum coordina-—

tes of all particles. For a fixed total energy U (system (i))
the microscopic partical configuration is given by the microca-

nonical ensemble, that means:

SU,V,N)
exp { - = const
k» for U-8U <#H < U+au

e°(q.. “ePrn) =
o] . else (3.7

# is the Hamiltonian of the N particles . system and 38U the
thickdess of the energy shell. S(U,V,N) in eq. (3.7) is the

entropy of the N particles system which is known to be /723/:

r .

SU,V,N) = +ka 1n _ dR, d? = dqi...dqmdps...dpn (3.8
The equilibrium probability distribution P2(N) (eq. (3.8)) is
defined by an integration over a subspace C{(N) of the assumed
cluster distribution. Inserting eq. (3.7) we find from eqg.
(3.6): ,

mﬁc.c.zv .
PO = exp |~ — ceny 895 oGP hu.cv
- )

In agreement with eq. (3.8) we introduce now the entropy of the

particle configuration N by

S(U,V,N) = ka 1n — a9 (3.10)
Jeaw

b4

and find the mn:»~w01wca probability distribution P2(N) finally
in the form:

P2 {No,N2...Ny) =

mac.c.zo.z-...zzcvnmAc.<.zv
exp - * (3.11)
- ;

where S{U,V,N)=const. acts as a normalization /8/.

Oo:m»amWw:n.m<mmms (ii) we find in the. same way eq. (3.11) with

the only distinction, = that now maﬂvumax.v.ﬁv.:wnr.wjm normali- -

zation S(H,p,N)=const. .
The ' investigatien of w<Mﬁu9<A»v with the njmTaou<:w3wn con-—
strains U,V,Ny,No=const. allows us to nmww<m,w:o limit cases
for the squilibrium probability distribution PeIN) . ]

Because of the relation U=F+TS, F being the *1mm energy ow
the m<mﬁm3. it <wm~nmw«01 the wmmawnwn system with the given

constrains: N

dU = dF + d(TS).= 0 - . 3.12)

Further, the 'entropy no:m»mwm.oﬁ two parts describing the

fontributions of the carrier gas and the condensable vapour:
dS = dS5. + dSo o T . 3.1

We can now discuss thae limit cases:
(a) No»Nu: In n7wm.nwmm‘mrm nmsumnwnc1r (eq. (2.8) (i)) can be
approximated by N :
T % To = 2U/3kaNo = const. =~ (3.14)
That means the latent ‘heat which vww released during ' the
no:amsmwmwos process will be transmitted to the carrier gas. It
plays the role of a :mwﬁ an1.4.4zm1mt01m we have isothermal
conditions. . ]
It results from eq. (3.12) that the change of the entropy in
the isothermal limit can be wrﬂﬂnmmmn by mmnlaa\ﬂvnﬂ and the
equilibrium U1wumuwu»nw,nwmn1wm:ﬁwo: Amn..,ANu»va is pow given
by:

wﬁa.cfsz

Pe(N) ™~ exp *) o
r ]

H T = const. {(3.15)




{(b) No—>0: If no carrier gas is present, the latent heat of
the ' condensation process leads to an increase of the tempera-—
ture - of the system. It results from eq. (2.9) So~—30 in the
limit Ng—30. Therefore, we obtain from eq. (3.13) dS=dS.
leading to

PO(N) ™~ exp M Nog — © (3.16)

mc.c.k.z.v
kp

Thus the nucleation process in the considered binary vapour for
<nn03mﬁu reduces in the limit cases given above either to an
isothermal nucleation process in an one—component vapour (a) or
Ano an isoenergetic nucleation process in an ozmlnoauozm:ﬁ
vapour (b). Both cases have been investigated mmum1WﬂmH< in
refs. /72,3/. ’

The real process of the phase transition via nucleation and
cluster - growth in a system with noswﬁwnn.<owcam takes place
between these limit cases. That is the reason why we have to
ceonsider in general the influence of the carrier gas and the

change of the temperature in the system.

3.3. Transition Probabilities
Inserting the equilibrium prohability distribution Pe(N) ~

exp(5(N)/kp) where S(N) is given by eq. (2.9), into the
condition of detailed balance, ed. (3.5), we arrive at:

mETm..z;w

WwiNIN") = ZAE._w‘nvmxvﬁ "
»

(3.17)
We fipd that the transition probabilities WwiNIN’) ‘and WIN’ Ny
are in a strong relation due to the knowl edge om the entropy
SNy . 4101wﬁ01m only a kinetic assumption for. one of the
transition probabilities is needed. The transition probability’
for the opposite process can be determined by means of ~ eq.
(3.17)>.

The assumption to determine the transition probabilities from
ﬁjm.vnosu»nwos.ot detailed balance involves a chemical equili-—
brium baetween all kinds of clusters. mﬂwUHm.<01mmxlumxm sotu-

tions for the probability flux are excluded from our point. of
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view.
For the assumed reactions (3.1) the distributions N and N° can
be specified as follows:
N o= nze.zuz»...z?,..z......z;\\....q..zz,b 3.18)
NT =

NGy NiNz. o cNa=1. 0 cNp=1. . o Npemt1 . . + N3

That means the transition propability w(N'[N) is related to a

cluster growth via the reaction A, + Ds —_— 0

I —me

We have to consider further that during a transition N - N-
also the temperature T(N) m:a‘njm\U1wmmcwm p(N) or the volume
CNZw of the system change.

We make now the following assumption for the transition

probability of cluster growth:

W INY = W NGy Np) = 0 T s NN /Y (3.19)

This ansatz agrees zmﬁr.:mcw- assumptions of the kinetic theory
of particle m:anmnﬂwosm in the gaseous state /9/. 1t means
that the probability of a reaction between two clusters of
sizes n, m increases with the :tsum1 of nubwﬁmwm and decreases
with the volume of the system. in ﬁJm.nmmm n=m we have to
choose instead of eq. (3.19) ziazmvaZJAZ)luv\c.

The wamawﬂWW.QJ.anﬂv describes the mwamvwnwum.Oﬁ.ﬂJm stocha—
stic process. It is determined in tlose relation to the
classical kinetic mmm theory. We choose the following ansatz
972

U, m(T) = nira+r,)=z d.:,..... exp Mn .m.u....ql..,. (3.20)
rn and r. are the radii of the spherical assumed mncmﬁmwm. the
value TW(r.+r.)=2 gives the total cross section of the interac~
tion of both clusters. v, . m is the mean relative velocity of
the clusters refered to each other. Assuming a Maxwell distri-
buted velocity of every species of clusters, the mean relative

velocity is expressed by /9/:

. - 8kpT \1-= men M
Va,m = H p = |— . —_ (3.21)
Ty m+n Na

where p gives the reduced mass of the clusterss; M is the molar
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mase and Na the Avogadro constant.

The meOJWJﬁ&mw considers, that the clusters only react i€
their relative kinetic energy is larger tran a certain amount
E, zzmnv is known to be the activation energy E, .=Ea. Since
the kinetic energy obeys a Boltzmann distribution, only an
amount exp(—Ea/kaT) of collisions takes place with an Trelative
energy larger than E,.

We note that the transition probabilities 6f cluster growth are
correlated, since the total number of particles is conserved.
Therefore, the clusters do not evolve independently /2,4/. This
means consequently for the master equation (3.4) that the
probability P(N,t) does not factorize and the stochastic
description will not 1macnn te a number of independent linsar
random walk processes as discussed in \pOL»M\.

In order to determine the opposite transition probability
WNIN) for the split of a cluster: B..., ~-——> Am + AL, we have
first to calculate the exponential of eqg. (3.17), taking into
_‘account that the cluster distribution changes as well as the
temperature w:n. in general, the volume of the m<mnm3. We want
to  discuss in the. following this latter and more complicated
case, where S=S(H,p,N).

umIOﬂw:n by V' T ,N.',fn° ' the <wwcmm after the change, " a
careful evaluation of the exponential leads to:

S{N)-S(N') Npant1 v- A:.svu\» 1 -

exp = —
ks ) NAN, m+n A2S(T ")

H n wﬁ » wﬁ
*mxull.l’MZJlll+||Mz|lll+MZ
2 ks aT ks T

-

For a further discussion we must consider, that the change of

the volume is related with nrm change of the temperature (see

8q. (2.6)). Assuming for the moment, that the cluster distribu-

-tion does not change, that means §f N, = ¢ N’ = const., we find
this relation from the first law of ﬂjw150a<3w3»mm.
gy + pdV = 0, resulting in:
3 T v - 1 3 3F, "
ENa{=ZIn == + 1n —~ = I Ny — {=—™ -~ (3.23)
20T v ks 3T 8T

68

This equation considers the change ©f the potential emergy of
the clusters, f,(T) => fa(T’), during the ﬁzwnnm of the tempe-
rature or the volume, respectively. In the most simplest case
(only free particles in the system) mn. (3.23) agrees with the
known relation T3/Z.V=const. , : '

If we take ﬁnﬁo account additionally the njmnﬂm of the cluster

distribution, eq. (3.23) gets a more complicated form:

N Au T v w. N 1 3F, . Fa
£ Nnjz In — + 1n —} = ¢ in No ¢ == e o —ee
2 T v’ S z ks 8T kaT"
(3.14)
1 3., £, 5
= Z Na'fln E No’ 4 == e o ol -2
ks 8T koT* 2

Inserting this eguation into eq. (3.12) we obtain wﬁﬁm1 a

careful calculation the ﬂmemunuoz D1OUQU-pﬂ< exactly as:

- : many\Ss2 ;4
WININ®Y = W (Nmpentl) = a(T) (Nper+1) lllv

m+n Puaaq.v.t
. ¢3.25)
An NoFn® - z:*:v
* Oxp
kaT’
The exponential can bé simplified mm.*o-02%"
ENp - S ST . )
INa " " -EN.f,, = Foen'—Fo —Fo + T N. L B3, I (3.26)
kaT’ kaT* ka T T .
If we demand that SAR—E.V must depend only on values (), a

nwm:mﬁowawnwoz U, m€T) > ot (T*') is needed. In order to
derive an m:m~<J\n 10mcwﬁ for w— “we m:1n701 neglect in a first
approximation all nmwam with a factor (1-T/T" y=0 compared with

the others. After a final transformation N — N", N => N with

Nt o= hzo.znzn...ZJ+»..pza+a...za&7+m...zz<u we arrive at:

Z)vu\» 1

(BnkaTy2 = p AI. (Fatrm)2 & Neer g7s7TT

WN" I = W (Npar) i

. Foer—Fn—f
ofp ~—nlinTfa Ea (3.27)
‘ kaT KaT

The value AE = famen—Ffwm—Ff, gives the change of the cluster

energies for a reaction ‘A.+A, => A.... If the cluster of size

(m+n) 1s more stable than the single clusters m,n, it holds
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AE<O (see Fig. 2). 1n this case a split of the large cluster
into pieces is rather unprobably because the energy barrier is

higher for such a reaction than in the case of coagulation.

IWI r'y
Kg

it SR\
AE]

+ -_—

\Vﬂ: \yj e \V:J.TD

Fig. 2:

Energy levels for the coagulation of two clusters with respect

to the activation energy En

4. Discussion of Special Results

4.1. Determination of the ﬂOﬂm:nwW~v4m15 Fa

The term f,, which describes the potential cluster energy,
shall be specified MJ the following:

- For the free Um1mwn~mm of the carrier gas (n=0) mwe define

fo=0. . , , o

- For the clusters of the condensable vapour we choose a first
approximation similar to the theory of atomic nuclei which

includes only volume and surface. effects:
fa == A(TI(N-1) + B(T)(n-1)=/= {4.1)

The first term of Wn. (4.1) corresponds to the binding energy
in the clustar, the second term to the surface energy. ’
In comparison with thermodynamic results the following expres—

sion for A was derived /13/:

P (TYA:=(T)Y
ksT

A(TY = - kuT In 4.2)

PT(T) means the equilibrium <wuocw.U1mmmC1m of the condensable

vapour at ﬁjm,mw<m3 temperature (eg. (1.4)).
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The surface energy is proportional to the surface area and to
the surface tension o. Assuming a spherical cluster it yields

for the constant B /713731

a: lN\u
waﬂvuaiq IW nlv 4.3,

Cxis the particle density in the cluster. Due to the classical
droplet model presumed here the surface tension o and the
particle density are assumed to Um\nosmﬁmzn with 1mmumnﬂ wo the
curvature. )

We npote that the ansatz (4.1) for ¥, is valid not only for
large clusters, where a real surface can be divided from the
inner part of the clusters, it <wmunw also a good approximation
for small clusters in agreement with computer simulations and
experimental results /714-16/. In particular it follows for the
free particles of ﬂrm condensable vapour {(monomers) f,=0. ’
Inserting eq. (4.1) into eq. Au.mﬂv_ﬁrm transition proba-

'

bility w™ is found in the form:

W7 Nman) = Ba af{TI)NpenP=(T)*

w . . m . .
*mxulllnA5+3luVH\UIABIqu\ulAJIHu»\qu IHI .Ah.au
kaT —A.l.—. ’

) ) Naol 3= .
with the constant Ba,m(T) = (8n/kaT)2-= p AMI (Rp+Rp) =

~The exponential now express only the change of the surface

energy due to the split of the cluster.
If we consider the special case that only free particles detach
from the cluster eq. (4.4) gets the #30;:.*013 2,47

S ’ 2 B 1 Ea
W Nmw1) = By 1 (TN s P (T) Bxp 3T rD TS T oy 4.3
. = »

The exponential now reflects the curvature dependence of the

saturation pressure above the cluster surface:

2 B do |
P*(rn) = P=(T)exp 3 ﬂlﬂ m-i/= ) = pe(Trexp ot (4.6)
» m

do is the capillary length.
The temperature dependence of p=(T) is m»<m: by eq. {1.4>. For
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(i) T(H,pe,N) =

a further discussion of the cluster-particle interactions in
the given system see /2,3/.

We want to mvmnwm< finally the actual temperature in the system
mz.nmvm:am:mw on the cluster distribution (eq. (2.8). For ¥,

|
in the considered case (eqg. {(4.1)>, neglecting only the
temperature vamznm:nm of the surface tensicn o and the density
Cxy 8G. (2.8) results in:
~

U+ ¥ z:ﬁnAauﬂvuwﬂsnwvu\uu

LS

G T, Vo,N) =

: ~N
ks (No+N_) - rlAZo+JMuZJV

NIt

(4.7)
N.{q(n—-1)-B(n-1)=2-3)

I
+
™z -

kx (No+NL)

NlW

We note firstly that the change of the ‘temperature depends
strongly on the ratio of the carrier gas (N.,) /2/, secondly,
that the temperature of the isochoric isolated system (i)

changes more remarkable because no volume work is performed.

a.N..dﬂmzmwﬁmos Probabilities of a Single Cluster

In order to explain the given results we discuss the transition
probabilities for the evolution of a single’ nucmﬂmr. which
interacts only with monomers. Zmnwwnﬂw:n the activation energy
Ea and smwnwuux the ﬂ1m:mwﬁwo: probabilities (eqgs. (3.19>,

(4.3)) with a factor (kaT)*/2 wg arrive at the simple transi-
tion probabilities

. N,
WnT = CikaT n27F oo, Ny =Ny - n G Y-
. qQ /1 1 .
WnT = CzkaT n2/3 pe(T,) exp ﬂHAII -]+ 4.9
©
2 B
+ — — pn~1r3 L
3 kaT

where c, ant cz are temperature i1ndependent constants.
! .
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Considering system (i) ‘with. the constraints U,Vo,N=const., the

temperature (eq. (4.7)) is now given by:

*

U+q{n-1)-B{n-1)=s3
T(U,Vo,n) = . 4.10)
3/2 kaN,C1+ No/Nos + nka

The temperature of the initial system, where no cluster exists,
can be introduced as follows:

2u

Ta = —— 4.11)
SkaNo (1+No/Ny)

The . initial partial supersaturation ya is a»<01 by eq. {1.3).
It is known from previous works /2/ that the supersaturation
decreases and mzm temperature increases ncmw:m the formation of
the cluster because of.the latent heat released. The wwmnsmﬁs
of the change depends nOlmwnm1wU~< on the ration No/Nu=R. A
larger value of R Hmmmm to nearly isothermal conditions, for
R =—> 0 we find isoenergetic conditions as has been discussed
in Sect. 3.2. ' .

Fig. 3 presents the transition ‘probabilities for the attachment
and esvaporation om,mwnm ﬂm1ﬂwn~mMAﬂo\*1oa the single cluster in
dependence on the cluster s5i,26 for two different values of R.
in order to discuss comparable situations we assume that the
initial nmsum1wﬁc1w Ta and the .initial WlumwmmnC1wnwo: Ya are,
both the same for the nosmwmm1ma mmmmm., E 4
Compared with Fig. 3a ﬂrw.mww:mwnmc: probability w* increases
in Fig. 3b more.rapidly swnJAl because of the increase of the
temperature. Its ‘decrease mﬁnmﬂszam is caused by the depletion
of the free Uw1ﬁwnnmw Oﬁ,wrﬁ condensable vapour. The transition
probability ‘w-  also strongly amumnmm o:.nzm increase of the
temperature via.the mncﬁww01wca pressure. ,

It is shown that depending on the values of the initial
supersaturation ya and the rate of ﬂmsvmdwn:1w increase two

points of intersection between w* and w— exist. The condition

WeoT=Wne1” givés the  equilibrium condition for the single
cluster, resulting from ﬁjw condition of detailed balance and
the extremum condition of the equilibrium probability distribu=~’

tion of the single clustér. The point of intersection for the
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smaller value -of n determines the critical {instable) cluster
size, while the point of intersection for the larger value of n
gives the wﬁwvun equilibrium cluster size /20,25/. The exi-
stence  of ra stable equilibrium between the cluster and the
surrounding <WUOC1. results from_ the. depletion of the free
Um1wun~mm in nmm finite systems and v.om the increase of the
equilibrium vapour pressura. It has been discussed in previous
papers both from a thermodynamic and kinetic point of view
79,25,26/. ’

In order to obtain a supercritical cluster w™ must exceed w-
for a certain range of the cluster size n. The Figs. 3a,b
demonstrate, that the critical cluster size increases and the
wanHm cluster size decreases for a decreasing ratio A=No/N,.
That means, the space of supercritical cluster sizes Per-SnSnNge

becomes smaller when an increase of me temperature takes

zu}om .
2.825
20

1175 Y .

s . 1 1 me :
1 32 63 94 125 1 32 63

(@) -=n (b)—n

place.

b C

Transition probabilities w,.~ (eq. (4.8)) and w.,— {eq. (4.9 in

dependence on the cluster size n. Fig. 3a: NuZO\chNOO.

Fig. 3b: R=No/Nu=20. Parameter: initial supersaturation ya (eq.

(1.3)). wn* is presented for (a) Ya=12, (b) ya=8, (c) ya=4, W™
does not depend on ya. System volume <u~.v.~ovnu5u. Nu=150,

Ta=280n

HJm specific properties of the vapour are obtained from
ethanol. ’
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4.3. Contribution of Coagulation and Split of Clusters

The question is very important whether the' contribution of
coagulation and split of n_:mnmmm can be neglected or not,
compared with the reactions Umﬂtmwz.nwcmﬂM1m and free partic-
les. In order to investigate this UTOUama we averaged 4 runs of
computer simulations of a uJDmm transition in system (ii) with
the constraints H,po,N=consf. The transition probabilities of
nucleation and evaporation, coagulation and split of clusters

are given by eqs. (3.19) and (4.4). We have assumed Ea=G,

actual temperature in the system is ‘given by eq. 4.7 {ii),
the actual volume results *103Amn. (2.6) (ii).,

The contribution of reactions of the type A, +A. ==>
DBLJW n,m22, is presented in Fig. " 4. We suppose that this
result depends on the special initial conditions wmmcamau

n7m1mm01m. Fig. 4 gives only a first estimation of the problem.

%o

304

‘1’<,

20- P

84 , Q ww

100 - 300 500 700 90 100 T
-- _uvD...ldl.nll,l,leURD...ln_ll .

NN
NN

NN
N\
N\

-

Amount of momacmmnnm: processes (P) and split of clusters (Q)
in 7% vs. total number of reactions « (averaged over 4 ru.s)
system parameter:, initial supersaturation ya.=12.5, Ta=290K,
Nu=250, R=No/Nu=50, Va=0.85.:10-21nqs .

The specific properties of the vapour ‘mww obtained from

ethanol.
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To mxuwwwz Fig. 4, P gives the percentage of the reactions
Am+A, — Amen and Q the percentage of the reactions An.. ->

“AmtA,, The opposite 100%Z-P-Q gives the percentage of alil
reactions with free particles: An+A; &= B .
v means the total number of 1mmnﬁm03m. it determines the
time scale. In the considered case 1100 reactions involve a
real time of about 100 ns.
It is to be seen that the contribution  of coagulation of
clusters increases during the first time because of the
Ummnosw:mzﬁ formation of small clusters. In a second time stage
it yields approximately an equilibrium between coagulation and
split of clusters: P~Q, while the total amount P+Q decreases.
This fact results from the decrease of the total number of
vmucmﬂm1m during the last stage of the phase transition. It is
of interest, that for the system considered here Dwmru< 257 of

all reactions include participates with n,m22. )

4.4, Applications of the lonmu to Free Adiabatic Expansion
A situation of practical importance in the field of" njmmm
transition is the formation of clusters during a free mapwUmﬁwn
expansion of a gas. This situation is given in the early
evolution of the cosmos, or during the first stages of laser
plasma vapour deposition of thin films /20/. -
The theory outlined here leads to proper transition probabili-
ties irwnj are applicable to such problems, since they includes
also the change of the thermodyriamic properties of the system.
We now discuss a. special case of the system (ii1) (cf. Fig.
1), where the external pressure Peo tends to ~m10. That means a
free adiabatic expamsion of the volume V ummaham no an increase
of the supersaturation and, therefore, to a stage of cluster
formation and coagulation. The increase of the volume dv shall

Um considered only in one mvmnm direction s. Then it yields:

dv ~ ds = v dt . (4.11)

where v is the mean <muon»m< of the expanding particles. Since

the monomers have the largest velocity, their actual position
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shall define the .actual volume. qim mean’ velocity of the
monomers in the' space direction is related to the ~actual
temperature via the equation: ) -

My
I<u."\l

1
- . 4.12)
2 2

Eq. (4.11) now vomcunw.wJ

1r2 N .
dv ~ Hnn gq.z;cv P ’ (4.13)

It is known from eq. {4.7) that the temperature of the system
depends on the actual volume and on the ,established n~:mwm1
distribution N, Umnwcmw ‘of the latent heat 1w~mmwmn. in order ‘to
daescribe the free waumUWﬁan expansion with respect to the
stochastic cluster formation and coagulation we propose there-
fore the following advance:

1. For given values V and T a stochastic computer simulation of
the cluster ebolution  is carried out AU< means of the
ﬂ1m3mwﬁw03 probabilities (3.19), (3.27) (see, -e.g.,
74,18,21/) - a new nHWwwwucﬂwoz.zf establishes with new
values V', T°'.. q N .

2. For the constant' cluster distribution N' the volume V-

expands during the nuﬁm,ﬂwSMJO* nJm.nwwn1wUrnwo: via eq.-

(4.13). The T-V relation is :o: given by eq. (3.23).

3. With the new <m~cmm <=. ™ uou:w 1. is nwwwpwa out.

It is assumed 7010. that ﬂ:o ﬁmavm1mnC1m is a global parameter
= that means also a change of the temperature in the clusters.
In the case of a no:Wﬂm:n anm1an temperature of the clusters
theat drops e.g.? eq. ~t3.23) of point 2. reduces mwivu% to
TS72y=const. Results ;om ﬂ70.0w<m: scenario to describe the
cluster formation nC1u:o a free wnumUWﬂuﬁ expansion are presen-

ted in subsequent Umum1w.




et

9. Kinetic mn:wwnc:w for the Mean Cluster Distribution

The mean number of clusters of size n is received from the

first moment of the probability P{(N,t):

SNA(E)> = L, No WAZO.ZM...ZJ....ﬁv (5.1)
f

uhz
{N;} means every possible cluster distribution which fulfills
the restrictive condition N=const.
By means of the ammﬂWW equation (3.4) the time dependence of
the mean values <N,(t)> can be expressed in the ﬁowuozwzm form
177/
d

MM AZJ:..VVH m A3Nn <wy (N INY > (5.2)

4sNn gives the value of the change of N, for every possible

stochastic reaction j where the N, participate. Wiy (N‘ |IN) >
denotes the averaged value of the SmVWﬂmn,ﬂ1m3mwﬂwoa probabi—
1ity for the reaction j. Using the transition U1ommuw~wﬂw0m
(3.19), <(4.4) we obtain from eq. (5.2) the following system of

equations:

d 1
MM <NN> = m »GmIJ ASfAZ»Zqu.I KW ANy +5) >
(5.3
dem<n

a=1

T LR, OO KWTINGNGY > - CWTNAs) D3 n=2, ... Ny

with $5,m=1 for j=n.

Going over to the densities c.=N./V and nmﬁw:wsn

K mm = Gm.n(T)

B

K mym = Bm. - (T)p=(T)exp MNIMHAB+JIavN\H -
: »

. : Ea”
- (m=1)2’3(n-1)=2,33 - .
kaT

we may write the kinetic equations of the mean values in the

form:
1 .
{€a> = m »OmIJ Hrfv.uAanAnuv - xlruAnval
. (5.4)
_ A+ EN
- K&n> umu {1+, Ck* n<cy> ~ k75,12
78
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From this equations two special cases can be derived:
(i) Assumir g only interactions betwsen.clusters and free par-—-

ticles: An+An<==>An.;, oq. (5.4) can be transformed into a
Fokker—-Planck equation: '

3
KCn> = - MN HxOJ.nAn»lelJlu.uuAnJv +
) (5.5)
1 3= .
+ m.muw [k™a,a<€1 >k~ oy, 211<C >

For a further awmncmmwod of eq. (4.35) seb e.g. \h.um\M

(i1) Assuming that the split of clusters can be neglected -
that means only cluster growth, A +A,~>A..m tm=1,...N.) eq.
(3.4) reduces to the known Smoluchowski equation of coagulation

theory 719,24/:

.
d+-nc<N
K™y 4<€y 2> = <epd )4 (143, )k, <c,>

(5.6?

The two special cases demonstrate that the mean values equation

LCn> =

for the cluster distribution derived here ., includes a variety of
kinetic reactions. .43@ .main point of OCWV theory is the
determination of | the reaction constants | for the considered
systems from a stochastic theory of coagulation. It involves:
also the nrw:nm Oﬁ,njm thermodynamic Uw1w5mﬂm1m of the system

which gover the dynamics of the phase transition.
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